1706. 球会落何处
题目描述
用一个大小为 m x n
的二维网格 grid
表示一个箱子。你有 n
颗球。箱子的顶部和底部都是开着的。
箱子中的每个单元格都有一个对角线挡板,跨过单元格的两个角,可以将球导向左侧或者右侧。
- 将球导向右侧的挡板跨过左上角和右下角,在网格中用
1
表示。 - 将球导向左侧的挡板跨过右上角和左下角,在网格中用
-1
表示。
在箱子每一列的顶端各放一颗球。每颗球都可能卡在箱子里或从底部掉出来。如果球恰好卡在两块挡板之间的 “V” 形图案,或者被一块挡导向到箱子的任意一侧边上,就会卡住。
返回一个大小为 n
的数组 answer
,其中 answer[i]
是球放在顶部的第 i
列后从底部掉出来的那一列对应的下标,如果球卡在盒子里,则返回 -1
。
示例1:
输入:grid = [[1,1,1,-1,-1],[1,1,1,-1,-1],[-1,-1,-1,1,1],[1,1,1,1,-1],[-1,-1,-1,-1,-1]]
输出:[1,-1,-1,-1,-1]
解释:示例如图:
b0 球开始放在第 0 列上,最终从箱子底部第 1 列掉出。
b1 球开始放在第 1 列上,会卡在第 2、3 列和第 1 行之间的 "V" 形里。
b2 球开始放在第 2 列上,会卡在第 2、3 列和第 0 行之间的 "V" 形里。
b3 球开始放在第 3 列上,会卡在第 2、3 列和第 0 行之间的 "V" 形里。
b4 球开始放在第 4 列上,会卡在第 2、3 列和第 1 行之间的 "V" 形里。
示例2:
输入:grid = [[-1]]
输出:[-1]
解释:球被卡在箱子左侧边上。
示例 3:
输入:grid = [[1,1,1,1,1,1],[-1,-1,-1,-1,-1,-1],[1,1,1,1,1,1],[-1,-1,-1,-1,-1,-1]]
输出:[0,1,2,3,4,-1]
方法:模拟
我们依次判断每个球的最终位置。对于每个球,从上至下判断球位置的移动方向。在对应的位置,如果挡板向右偏,则球会往右移动;如果挡板往左偏,则球会往左移动。若移动过程中碰到侧边或者 $\text{V}$ 型,则球会停止移动,卡在箱子里。如果可以完成本层的移动,则继续判断下一层的移动方向,直到落出箱子或者卡住。
/**
* 1706. 球会落何处
*
* @param grid
* @return
*/
public int[] findBall(int[][] grid) {
int length = grid[0].length;
int[] ans = new int[length];
for (int i = 0; i < length; i++) {
int col = i;
for (int[] row: grid) {
int dir = row[col];
col += dir; // 移动球
if (col < 0 || col >= length || dir!=row[col]) {
col = -1;
break;
}
}
ans[i] = col;
}
return ans;
}